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S7 Two-population rate model with a threshold-

linear transfer function with J
EE
0 > 0

The results described in the main text for the two-population rate network
with threshold-linear transfer function were obtained with JEE

0
= 0. We

found that there are two mechanisms for the emergence of chaos in these
networks. Here we extend these results to networks with JEE

0
> 0. It must

be first noted that if EE synapses are strong and too fast compared to II
synapses, the network dynamics can bifurcate from fixed point to oscillations
(rather than to chaos). Bifurcations to oscillations are not in the topic of
the present paper. Therefore we will assume that EE connections are slow
enough to prevent them.

An example of the phase diagram in such a case is depicted in Fig. S7A
for values of JEE

0
and JEI

0
which are comparable. As it is the case for

JEE
0

= 0 chaos occurs (white region). Figure S7B-C demonstrates that the
mutual inhibition (JII

0
) as well as the loop EIE contribute to the emergence

of the chaos. To that end, we compare a reference case (τEI = τIE = τII
= 10 ms, blue) to cases with tenfold increase in τII (green) and τIE (red).
When the II connections are relatively weak (Fig. S7B) the increase in
the IE synaptic time constant affects the decorrelation time more strongly
than the increase in the II time constant. This indicates that here the EIE
loop contributes more to the chaos generation than the II interactions (as
in Fig. 15B when JEE

0
=0). In contrast, for large JII

0
the greater effect on

decorrelation time is observed when τII is changed (Fig. S7C) implying that
here it is the II connections that have the larger contribution to the chaotic
dynamics (as in Fig. 15A when JEE

0
=0).

The region plotted in red in Fig S7A corresponds to the domain of exis-
tence and stability of the fixed point with strictly positive firing rates of the
two populations, rE and rI . In this region the network state is stationary
and balanced in the two populations. In the blue regions (plain and striped)
the network settles in a state which is also a fixed point of the dynamics
but with rE = 0 and rI > 0, i.e., the I population is balanced but not the
E population. In the blue-striped region, this state coexists with a solution



of the balance equation with rE > 0, rI > 0. However, the latter is unsta-
ble. In the green region the network is unable to control its activity which
diverges in the large K limit.



Figure S7: Two-population rate model with a threshold-linear

transfer function and EE connections. A. The phase diagram for
JEE
0

= 1.5, JEI
0

= 0.8 and IE = II = 1 and K → ∞. The vertical line
at the left boundary of the red region is given by JII

0
= JEI

0

II

IE
= 0.8.

The straight line at the lower boundary of the white region is given by:

JIE
0

=
J
EE

0

JEI

0

JII
0

= 1.875JII
0
. Red region: The network stable state is a fixed

point with rE > 0, rI > 0 in which inhibition balanced excitation in the
two populations. White region: This fixed point with exists but is unsta-
ble. Inhibition balanced excitation in the two populations but the dynamics
is chaotic. Blue regions: The stable network state is a fixed point with
rE = 0, rI > 0. In the blue-striped region, this state coexists with a fixed
point balanced state with rE > 0, rI > 0. However the latter is unstable.
Green region: The activity goes to infinity in the two populations. The
network is unstable (in the limit K → ∞). B-C: PAC in simulations of a
network with N = 8000, K = 400, τEE = 100 ms, JIE = 10, JII = 0.85 (in
B) and 4 (in C). Other parameters are as in A. Blue: Reference case, τII =
τEI = τIE = 10 ms. Green: Slow II synapses. The synaptic time constants
are τII = 100 ms and τEI = τIE = 10 ms. Red: Slow IE synapses. The
synaptic time constants are τIE = 100 ms, and τEI = τII = 10 ms. For
small JII (B), the decorrelation time is substantially dependent on τIE and
to a lesser extent by τII . It is the opposite for large JII (C).


